2,411 research outputs found

    Development and experimental evaluation of the control system of a hybrid fuel cell vehicle

    Get PDF
    This work presents the development and experimental evaluation of a Fuel Cell Hybrid Vehicle, focusing on the control system. The main objective of this paper is to present a real vehicle which has been designed in order to demonstrate the feasibility of the use of hydrogen as an energy source for automotive applications. The paper describes the components that are integrated in the vehicle and presents several experimental results obtained during normal operation. A control system is designed and tested in order to perform all the operations related to the coordinated operation of the fuel cell, the intermediate electrical storage and the power train. Its main task is to compute the power that must be demanded to the fuel cell in real time. This computation is done in order to satisfy the power demand of the electric motor taking into account the state of charge of the batteries and the operating regime of the fuel cell. This is accomplished by manipulating the electronic converter which regulate the current that the fuel cell supplies to the batteries.Ministerio de Ciencia y Tecnología DPI2007-66718-C04-0

    Fundamentals and Applications of Surface-Enhanced Raman Spectroscopy (SERS)

    Get PDF
    When a molecule is adsorbed on some metallic nanostructured surfaces such as silver, copper or gold, it can undergo an enormous enhancement of the Raman signal giving rise to the so called Surface-Enhanced Raman Scattering (SERS). The high sensitivity of this effect allows an accurate structural study of adsorbates at very low concentrations. The SERS effect has historically been associated with the substrate roughness on two characteristic length scales. Surface roughness on the 10 to 100 nm length scale supports localized plasmon resonances which are considered as the dominant enhancement mechanism of SERS (Electromagnetic Enhancement Mechanism: SERS-EM). It is usually accepted that these electromagnetic resonances can increase the scattered intensity by an average factor of ca. 104 to 107. A secondary mechanism often thought to require atomic scale roughness is referred to as Charge Transfer (CT) Enhancement Mechanism (SERS-CT). This mechanism involves the photoinduced transfer of an electron from the metal to the adsorbate or vice versa and involves new electronic excited CT states which result from adsorbate–substrate chemical interactions. It is also estimated that such SERS-CT mechanism can enhance the scattering cross-section by a factor of ca. 10 to 102. These two mechanisms can operate simultaneously, depending on the particular systems and experimental conditions, making difficult to recognize each one and to estimate their relative magnitude in a particular spectrum.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

    Get PDF
    Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Influence of Calcium on the Early Steps of Rotavirus Infection

    Get PDF
    AbstractThe structure of rotaviruses and many steps of their replication cycle depend on the concentration of calcium in the microenvironment. In this work, to learn about the role of calcium during the early steps of the infection, we characterized the effect of increasing the calcium concentration in the medium on the infectivity of rotaviruses. We found that a fivefold increase in the calcium concentration of the cell culture medium results in an increased viral titer in all rotavirus strains tested. The effect of this divalent ion seems to be mainly on the viral particle and not on the surface of the cell. Analysis of the intrinsic fluorescence spectra of purified triple-layered particles revealed that changes in the environment of tryptophan residues occurred as calcium concentration increased, suggesting that conformational changes in the viral particle might be responsible for the effect of this ion on the viral infectivity

    Transient Propagation and Scattering of Quasi-Rayleigh Waves in Plates: Quantitative comparison between Pulsed TV-Holography Measurements and FC(Gram) elastodynamic simulations

    Get PDF
    We study the scattering of transient, high-frequency, narrow-band quasi-Rayleigh elastic waves by through-thickness holes in aluminum plates, in the framework of ultrasonic nondestructive testing (NDT) based on full-field optical detection. Sequences of the instantaneous two-dimensional (2-D) out-of-plane displacement scattering maps are measured with a self-developed PTVH system. The corresponding simulated sequences are obtained by means of an FC(Gram) elastodynamic solver introduced recently, which implements a full three-dimensional (3D) vector formulation of the direct linear-elasticity scattering problem. A detailed quantitative comparison between these experimental and numerical sequences, which is presented here for the first time, shows very good agreement both in the amplitude and the phase of the acoustic field in the forward, lateral and backscattering areas. It is thus suggested that the combination of the PTVH system and the FC(Gram) elastodynamic solver provides an effective ultrasonic inspection tool for plate-like structures, with a significant potential for ultrasonic NDT applications.Comment: 46 pages, 16 figures, corresponding author Jos\'e Carlos L\'opez-V\'azquez, [email protected]. Changes: 1st, 4th, 5th paragraphs (intro), 3rd, 4th paragraphs (sec. 4); [59-60] cited only in appendixes; old ref. [52] removed; misprints corrected in the uncertainty of c_L (subsec. 3.1), citation to fig. 10 (sec. 4), size of images (caption fig.15); reference to Lam\'e constants removed in subsec. 3.

    Large Nc scaling of meson masses and decay constants

    Full text link
    We perform an ab initio calculation of the Nc scaling of the low-energy couplings of the chiral Lagrangian of low-energy strong interactions, extracted from the mass dependence of meson masses and decay constants. We compute these observables on the lattice with four degenerate fermions, Nf= 4 , and varying number of colours, Nc= 3 –6, at a lattice spacing of a≃ 0.075 fm. We find good agreement with the expected Nc scaling and measure the coefficients of the leading and subleading terms in the large Nc expansion. From the subleading Nc corrections, we can also infer the Nf dependence, that we use to extract the value of the low-energy couplings for different values of Nf. We find agreement with previous determinations at Nc= 3 and Nf= 2 , 3 and also, our results support a strong paramagnetic suppression of the chiral condensate in moving from Nf= 2 to Nf=

    Numerical modeling and measurement by pulsed television holography of ultrasonic displacement maps in plates with through-thickness defects

    Get PDF
    We present a novel numerical modeling of ultrasonic Lamb and Rayleigh wave propagation and scattering by through-thickness defects like holes and slots in homogeneous plates, and its experimental verification in both near and far field by a self-developed pulsed TV holography system. In contrast to rigorous vectorial formulation of elasticity theory, our model is based on the 2-D scalar wave equation over the plate surface, with specific boundary conditions in the defects and plate edges. The experimental data include complex amplitude maps of the out-of-plane displacements of the plate surface, obtained by a two-step spatiotemporal Fourier transform method. We find a fair match between the numerical and experimental results, which allows for quantitative characterization of the defects
    corecore